Construction of Hierarchical CuO/Cu2O@NiCo2S4 Nanowire Arrays on Copper Foam for High Performance Supercapacitor Electrodes
نویسندگان
چکیده
Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu₂O@NiCo₂S₄) core-shell nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy. Vertically aligned CuO/Cu₂O nanowire arrays are firstly grown on Cu foam by one-step thermal oxidation of Cu foam, followed by electrodeposition of NiCo₂S₄ nanosheets on the surface of CuO/Cu₂O nanowires to form the CuO/Cu₂O@NiCo₂S₄ core-shell nanostructures. Structural and morphological characterizations indicate that the average thickness of the NiCo₂S₄ nanosheets is ~20 nm and the diameter of CuO/Cu₂O core is ~50 nm. Electrochemical properties of the hierarchical composites as integrated binder-free electrodes for supercapacitor were evaluated by various electrochemical methods. The hierarchical composite electrodes could achieve ultrahigh specific capacitance of 3.186 F cm-2 at 10 mA cm-2, good rate capability (82.06% capacitance retention at the current density from 2 to 50 mA cm-2) and excellent cycling stability, with capacitance retention of 96.73% after 2000 cycles at 10 mA cm-2. These results demonstrate the significance of optimized design and fabrication of electrode materials with more sufficient electrolyte-electrode interface, robust structural integrity and fast ion/electron transfer.
منابع مشابه
NiCo2S4@NiMoO4 Core-Shell Heterostructure Nanotube Arrays Grown on Ni Foam as a Binder-Free Electrode Displayed High Electrochemical Performance with High Capacity
Core-shell-structured system has been proved as one of the best architecture for clean energy products owing to its inherited superiorities from both the core and the shell part, which can provide better conductivity and high surface area. Herein, a hierarchical core-shell NiCo2S4@NiMoO4 heterostructure nanotube array on Ni foam (NF) (NiCo2S4@NiMoO4/NF) has been successfully fabricated. Because...
متن کاملEnhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors
As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo2S4@NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a...
متن کاملDendritic Heterojunction Nanowire Arrays for High-Performance Supercapacitors
Herein, we designed and synthesized for the first time a series of 3D dendritic heterojunction arrays on Ni foam substrates, with NiCo2S4 nanowires as cores and NiCo2O4, NiO, Co3O4, and MnO2 nanowires as branches, and studied systematically their electrochemical performance in comparison with their counterparts in core/shell structure. Attributed to the following reasons: (1) both core and bran...
متن کاملMulti-functional reactively-sputtered copper oxide electrodes for supercapacitor and electro-catalyst in direct methanol fuel cell applications
This work reports on the concurrent electrochemical energy storage and conversion characteristics of granular copper oxide electrode films prepared using reactive radio-frequency magnetron sputtering at room temperature under different oxygen environments. The obtained films are characterized in terms of their structural, morphological, and compositional properties. X-ray diffraction, X-ray pho...
متن کامل1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability.
The fabrication of supercapacitor electrodes with high energy density and excellent cycling stability is still a great challenge. A carbon aerogel, possessing a hierarchical porous structure, high specific surface area and electrical conductivity, is an ideal backbone to support transition metal oxides and bring hope to prepare electrodes with high energy density and excellent cycling stability...
متن کامل